Higher Technological Institute
Computer Science Department

Geometric Transform

Dr Osama Farouk
Dr Ayman Soliman
Dr Adel Khaled

Outline

$>$ Inverse Transformations
$>$ Two-Dimensional Composite Transformations
> Composite Two-Dimensional Translations
$>$ Composite Two-Dimensional Rotations
> Composite Two-Dimensional Scaling
$>$ General Two-Dimensional Pivot-Point Rotation

Inverse Transformations

- Inverse translation matrix
- Translate in the opposite direction

$$
\mathrm{T}^{-1}=\left[\begin{array}{ccc}
1 & 0 & -r_{r} \\
0 & 1 & -f_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Inverse rotation matrix
- Rotate in the clockwise direction
$\mathbf{R}^{-1}=\left[\begin{array}{ccc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ 0 & 0 & 0 \\ \cos & 1\end{array}\right]$
- Inverse scaling matrix

$$
s^{-1}=\left[\begin{array}{ccc}
\frac{1}{s_{3}} & 0 & 0 \\
0 & \frac{1}{y_{y}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Two-Dimensional Composite Transformations

Forming products of transformation matrices is often referred to as a concatenation, or composition, of matrices

We do premultiply the column matrix by the matrices representing any transformation sequence
since many positions in a scene are typically transformed by the same sequence, it is more efficient to first multiply the transformation matrices to form a single composite matrix

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{M}_{2} \cdot \mathrm{M}_{1} \cdot \mathrm{P} \\
& =\mathrm{M} \cdot \mathrm{P}
\end{aligned}
$$

Composite Two-Dimensional Translations

- If two successive translation vectors ($\mathrm{t}_{1 y}, \mathrm{t}_{1 y}$) and ($\mathrm{t}_{2 \times 1}, \mathrm{t}_{2 y}$) are applied to a 2-D coordinate position P , the final transformed location P^{\prime} is

$$
\begin{aligned}
& =\left\{T\left(f_{z x}, I_{y y}\right)-T\left(f_{1 x}, H_{y y}\right)\right\}-\mathrm{P}
\end{aligned}
$$

- The composite transformation matrix for this sequence of translations is

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & i_{3} \\
0 & 1 & i_{1 y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & t_{1 s} \\
0 & 1 & t_{1 y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{15}+t_{1 x} \\
0 & 1 & t_{i y}+t_{1 y} \\
0 & 0 & 1
\end{array}\right]} \\
& T\left(t_{2}, H_{y y}\right) \cdot \mathbf{T}\left(H_{15}, t_{4 y}\right)=\mathbf{T}\left(H_{15}+t_{2 x}, H_{1 y}+H_{1 y}\right)
\end{aligned}
$$

Composite Two-Dimensional Rotations

- Two successive rotations applied to a point P

```
F}=\mathbb{R}(\mp@subsup{0}{1}{\prime})\cdot{\mathbb{R}(\mp@subsup{0}{1}{\prime})\cdot\textrm{F}
    - (R(\mp@subsup{Q}{2}{})
```

- We can verify that two successive rotations are additive:

$$
\mathbb{R}\left(\Theta_{2}\right) \cdot \boldsymbol{R}\left(\varphi_{1}\right)=\mathbf{R}\left(\Theta_{1}+\theta_{2}\right)
$$

- The composition matrix

$$
\mathbf{F}=\mathbf{R}\left(\theta_{1}+\theta_{2}\right) \cdot \mathbf{F}
$$

Composite Two-Dimensional Scaling

- For two successive scaling operations in 2-D produces the following composite scaling matrix

$$
\begin{gathered}
{\left[\begin{array}{ccc}
27 x & 0 & 0 \\
0 & s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{1 x} & 0 & 0 \\
0 & s_{1 y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2_{1 x} s_{2 x} & 0 & 0 \\
0 & s_{1 y} \cdot s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
S\left(s_{2 x}, s_{2 y}\right) \cdot S\left(s_{1 x}, s_{1 y}\right)=S\left(s_{1 x} \cdot s_{2 x} \cdot s_{1 y} \cdot s_{2 y}\right)
\end{gathered}
$$

General Two-Dimensional Pivot-Point Rotation

- Graphics package provides only a rotate function with respect to the coordinate origin
- To generate a 2-D rotation about any other pivot point (x_{r}, y_{f}), follows the sequence of translate-rotate-translate operations

1. Translate the object so that the pivot-point position is moved to the coordinate origin
2. Rotate the object about the coordinate origin
3. Translate the object so that the pivot point is returned to its original position

General Two-Dimensional Pivot-Point Rotation (2)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{0}(1-\cos \theta)+4 \sin \theta \\
\sin \theta & \cos \theta & y(1-\cos \theta)-x \sin \theta \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\mathrm{T}\left(x_{r}, y\right) \cdot \boldsymbol{R}(\varphi) \cdot \mathbf{T}\left(-x_{r},-y\right)=\mathbf{R}\left(x_{r}, y, 4\right)$

(4)

Orimial Podition dotied and Finot Point

Trandition of object mothat Object mot thit Pwol Point (7, give Onign

(c)

Robation abluil atoul

(d)

Thandation et obret en that Obper me thi the Pvol Point at Thelimed to Tosilion (r, y)

FIGURE 5-9 formation spquencr for voluting ain otpot shout a
 the rotation matrix E/0 of Eranmformation 5-19

End of Lecture Good Luck!

See you
in next lecture...
END

